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ABSTRACT

In this report, a composite control scheme for the control of robot manipula-
tors is proposed.

Due to the modeling error or environmental uncertainties, robot motion may
present a significant positioning error by using a conventional Computer-Torque
Method. To improve tracking capability of robot manipulators, sliding mode
control and nonlinear control algorithms have been introduced, but computation
is costly, and thus a fast motion execution using simple computer sources is
impossible.

To solve this problem, we present a composite control algorithm to control
robot motion combining a discrete feedforward component and a continuous feed-
back component. The discrete feedforward component provides a nominal torque
computed using the robot dynamics and compensates for dynamic coupling be-
tween the links. This part can be updated in a large sampling time, and can
be computed off-line generally, thus real time computation is decreased. The
continuous feedback control component uses a structure of Variable Structure
System and provides a robust control to disturbances during the sliding mode.
This part can be digitally implemented using a short sampling time, and thus
a fast motion of a multi-degree freedom robot manipulator can be executed by
using a simple computer, or even a single board computer with an 8-bit CPU.

The stability of the proposed multiple-rate control scheme is proven in the
paper and efficiency of the control scheme has been demonstrated by simulations
of a three-link robot subject to parameter and payload uncertainties.



1 Introduction

The lack of efficient and robust real-time control algorithms for high speed motions is one
of the important reasons why the applications of the present robotic manipulators are lim-
ited. The dynamic equation of robotic manipulator is highly nonlinear due to the inertia
and strong coupling terms among the joints, such as centrifugal, Coriolis and gravitational
forces [11, 12]. It is difficult to guarantee the tracking error bound in high speed motion.
by neglecting the nonlinear dynamic terms which may act as a large disturbance to the
controller. In order to improve the trajectory tracking accuracy, it is necessary to take the
robot manipulator dynamics into consideration [12].

The well-known Computed Torque Method (CTM) normally provides a feasible controller
if the exact knowledge of the manipulator dynamics is available. However, for a large amount
of applications, it is impossible to obtain the complete dynamic model of robots, due to
modeling uncertainties, parameter variation and unknown payloads. These uncertainties.
especially the error of inertia matrix, may result in the instability of robot systems [17,
13]. On the other hand, the computation time of such a complex dynamics also makes its
implementation impractical in some cases.

The sliding mode controller based on the Variable Structure System (VSS) method has
the properties of rejection to disturbance and insensitivity to parameter variations. The
method does not need to have a complete knowledge of the accurate model, and only knowl-
edge required is the bounds of uncertain parameters of the system for the design of the
controller [181. These two features are exactly the merits for the control of a manipulator
which is subjected to the modeling uncertainties and large disturbances. Therefore, the
sliding mode control [10, 6, 4, 5] has been proposed in many robot control algorithms.

Depending on the side of the hyperplane (i.e., sliding surface) that the system belongs
to, the VSS is of two structures. If the control structure can be switched with an ideally
infinite frequency, the motion of the controlled system remains on the sliding surface. Then,
the system is governed by dynamics of the sliding surface only, and the system is insensitive
to parameter variations and disturbances. However, an ideal switching of the input with
an infinite frequency is practically impossible due to the switching delays and neglecting
time constants. Instead, the control input switches with a finite high frequency and the
motion of the system is within some neighborhood of the sliding surface with chattering.
This chattering is generally undesirable in practice, since it involves extremely high control
activity and thereby excites the high frequency dynamics that is neglected in the model.

To solve this problem, various algorithms have been proposed to replace the discontinuous
control in neighborhood of the sliding surface by the continuous control [6, 4, 5], such as
the VSS algorithm, if the trajectory is outside the boundary of the sliding surface. If the
trajectory is within the boundary of the sliding surface, however, a lot of people suggested to
interpolate the control by proper continuous function to minimize the chattering caused by
a switching input. In the implementation of these algorithms digitally, we need to compute
robot model and feedback of position and velocity at every sampling time. In spite of
the efficient recursive dynamic algorithms [11, 12, 8] and computing architectures 15], the
computation of the model is relatively more costly. The time delay of control input, due to
the computation time, deteriorates the performance in real-time control systems [9].
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To reduce the time delay of control, it is desirable that the feedback is not involved in
computation of the model, and the feedforward compensation using the nominal torque is
good in this sense [3, 1]. The adaptive control algorithm with feedforward compensation
provides a robust method to control robot manipulators. Actually there are a lot papers
about the stability of the adaptive control. The feedback component of the adaptive control
needs a considerable amount of computation. We believe that the composite controller com-
bining the discrete feedforward and continuous feedback controls provides a good trajectory
tracking performance in the real-time implementation.

In this paper, a composite control algorithm is proposed and the stability of the system is
proven. The proposed algorithm is comprised of discrete and continuous control loops. The
discrete feedforward component provides a nominal torque computed using robot dynamics
and compensates for dynamic coupling between the links. This part can be updated in a
large sampling time, and can be computed off-line generally, thus a real time computation is
infeasible. The continuous feedback control component uses a structure of Variable Structure
System and provides a robust control to disturbances of the system during the sliding mode.
This part can be digitally implemented using a short sampling time, and thus a fast motion
of a multi-degree freedom robot manipulator can be executed by using a simple computer.
or even a single board computer with an 8-bit CPU.

The rest of the paper is organized as follows. In Section 2, we describe preliminary
Lemmas as a preparation for the main control algorithms. In Section 3, we present a new
composite control algorithm with proofs. In Section 4, the efficiency of the proposed algo-
rithm for the position control is demonstrated by the simulation of a three degrees-of-freedom
manipulator. The robust property to the modeling errors, the time delay of computation, pa-
rameter uncertainties and payload variations is discussed. We conclude the paper in Section
5.
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2 Preliminaries

The motion equations of an n degree-of-freedom (d.o.f.) manipulator can be derived using
the Lagrange-Euler formulation as

D(q(t))4(t) + h(q(t), 4(t)) = r(t) (1)

where T(t) E R' is a joint input torque vector; q(t), 4(t), 4(t) E R n are the generalized
position, velocity and acceleration vectors of the joint angles; D(q(t)) E R n × is a symmetric
positive definite inertia matrix, and h(q(t), 4(t)) E R is a nonlinear coupling vector including
centrifugal, Coriolis and gravitational forces [2]. In the following, we denote D(q(t)) by D
and h(q(t), 4(t)) by h for brevity.

Let us define the state vector x(t) E R2'n as

x(t) = [q(t) T ,'4(t)T ]T . (2)

Then the state equation of the robot system is

;i(t) = 00I o x(t) + [-D- Ih ]+ Do r (t). (3)

Given the desired trajectories qd(t), qd(t), 4"d(t) E R" and initial time to, we define the sliding
surface vector s(t) E R as

s(t) = 6(t) + Kve(t) + l'p itj e(r)dr (4)

where e(t) = q(t) - qd(t) is an error vector in joint space and K,,,Kp E Rfl ×fl are gain
matrices. For the use of the following derivation, we introduce intermediate trajectories,
q.(t), 4.(t), q.(t) E R , which satisfies the following equation

i(t) + K6(t) + Kpe(t) = 0. (5)

Then we can rewrite (5) as follows

.(t) - id(t) = A . [x.(t) - Xd(t)] (6)

where x.(t) = [q.(t)T,4.(t)T]T E R2n, Xd(t) = [qd(t)T, 4d(t)T]T E R2 ' and A E R 2nx 2 n isA=[ 0 1 ].(7
A= -Kp -K. (7)

Since det[AI - A] = det[A I + AK, + Kp], we can choose K,, and K so that all the eigenvalues
of the matrix A have negative real parts, which guarantees the exponential stability of the
system (6), and then there exist g > 0 and tc > 0 such that

1eA11 :3 g e-,(S
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for all t > 0 [161. Here, the Euclidean matrix norm of A is defined as

JIAil = [AM(ATA)]' (9)

where AM(.) denotes the maximum eigenvalue of a matrix. Now, we will state the following
two Lemmas as a prerequisite to the main theorems.

Lemma 1 : If the sliding surface defined by Equation (4) satisfies 1Is(t)I < for any
t > to, then

IlX() - X-(t) :5 [Ilx(to) - X(to)I + 2y]. e. ,, (10)

is satisfied for all t > to.
Proof : Using (4) and (6), we may rewrite (3) as

.(t) - i.(t) = A. [x(t) - x.(t)] + [ ] (11)

Integrating both sides of (11) yields

[x(t) - x.(t)] = [x(t.) - x.(t)] - A . [x(77) - x.( 7 )d 7 + s(t)- S(to) (12)

Taking the norm of both sides, we get

Ilx(t) - x.(t)1l _ [h1x(to) - x.(to)Il + 2-y] + ./AI . IIx(r) - x.(r)JJdr. (13)

If we apply the Bellman-Gronwall Inequality [14] to (13), we obtain

11X(t) - X.(t)l < [llX(to) - x-(t)lI + 2] . eIIA t  (14)

for all t > t., and thus Lemma 1 is true.
If we take x.(t) = x(to) at the initial time, Equation (10) becomes

lix(t) - x.(t)1l < 2- e J.411t. (15)

The above Lemma implies that the distance from real trajectory x(t) to the intermediate
trajectory x.(t) is bounded for a finite time. The Lemma 2 below shows that the boundness
of the tracking error holds also for an infinite time interval. Considering p as a positive
number and vector v E R", we define the neighborhood set as follows

S(p; v)= {w E R"; 11w - vJJ _< p}. (16)

Lemma 2 : Suppose IIs(t)Il < -1 is satisfied for all t > to for some t,, and the system
(6) is exponentially stable and satisfies (8). Then x(t) converges exponentially into the set
S(6'Y;Xd(t)) with f which is given by

2. (1 + M) •1 (11
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where y is defined as JIAJJ
-~i (iS)

Proof : Since the intermediate trajectory satisfies (8), there exists T = T(a) < 00

T = ln(a/g) (19)
K

which yields
Ilx.(t + T) - Xd(t + T)1 < a . lz.(t) - Xd(t)Il (20)

for any a E (0,1) and for all t. Define E(a, ) as

E,) 2. eIIAI 'T (21)E~a,3)=/3-a (1

for any/3 E (a, 1). Now, if IIX(to)-Xd(to)Il > E(a, /3).y holds for some to, let x.(t.) = x(to).
Using the triangle inequality, we obtain

lx(to + T) - Xd(to + T)11 < hlx(to + T) - x.(to + T)l1 + llx.(to + T)- Xd(to + T)II. (22)

Recalling the inequalities (15) and (20), we can rewrite (22) as follows

[Ix(to + T) - Xd(to + T)1f __ 2- eIIA[IIT + a lx.(to) - xd(to)ll

2_ eIJIAIT
< E(a,/3) + a} jjx(o) - Xd(to)ll

= /3" IX(to)- Xd(to)hj. (23)
Now if 11x(t) - xd(t) l > E(a,/3) .- y holds for t = t, + T, we repeat the previous process
with the initial condition x.(to + T) = x(to + T) at time t = to + T. Then

lix(to + 2T) - Xd(to + 2T)I < /3" 1x(to + T)- Xd(to + T)l1
</32 lX(to) - Xd(to)H. (24)

If this process is repeated n times, we have

hix(to + nT) - Xd(to + nT)l < /3-IIX(to) - xd(to)l. (25)

Equation (25) implies the exponential convergence of x(t) into the set S(E(a,/3); xd(t)).
It remains to find out the supremum of the trajectory errors for all a and /3 with the

constraint 0 < a < /3 < 1. Clearly, the infimum of E(a,/3) with respect to /3 occurs as/3
1, and this results in

2. eiIAII 'T
E(a, 1) = 1-a (26)

We differentiate E(a, 1) with respect to a and let the derivative be equal to 0, i.e..

dE(a, 1) _ 2(1/g)(a/g)((Y+1). {(1 + I.llE)a - I 0. (
da (1-a)2  (.7)2,)
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We can obtain the minimum of E(a, 1) when

1 + PUC1'
K

and the upper bound of the trajectory error, c = E(a*, 1), is given by (17) and (1S). This
completes the proof of Lemma 2.

Note that the equivalent trajectory is only a virtual intermediate function between x(t)
and Xd(t) and does not exist in a real system. If IIX(to) - Xd(to)II :_ f "Y is satisfied at the
initial time t = t,, then the system trajectory satisfies I1x(t) - xd(t)I _ ( -for all t > t".
In the next section, we will propose a controller which guarantees [Is(t)I _ Y, then the
trajectory error is bounded in virtue of Lemma 2.
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3 Composite Control Algorithm

To compute the input torque using the nonlinear control algorithms, we need the dynamic
model of a robot system. For many cases an exact model is impossible due to the parameter
uncertainties and payloads variations. Therefore, we express the model of the robot system(1) as follows

D(q(t)) .q(t) + h(q(t), 4(t)) = r(t) (2S)

where b(q(t)). ij(t) and h(q(t)), 4(t)) represent the corresponding terms of the real system
(1) with modeled values of the parameters.

In general, we may consider the control as two parts, a feedforward term and a feedback
term, i.e.,

T(t) = r'f(t) + T(t) (29)

where
r1f(t) = !)(4d(t))qid(t) + h(4d(t) (t)) (30)

and
r,(t) = D(qd(t)) . u.t(t) (31)

u'(t) = -Kf(t)- Kpe(t) - ks(t) - k, s(t) (32)IlsMt)[ + A"'32

The feedforward term 7f1 (t) and the premultiplying coefficient, b(qd(t)) of the feedback
term r,(t) can be computed in off-line, and thus are step functions with time interval T
which is supposedly greater than the necessary computation time for the model (2S). In spite
of the development of various algorithms and enhancements of computing architectures, com-
putation of the model is still costly and thus the required time interval TO is still not small.
We used the notations d(t), d(t), qd(t) to denote the sampled values of the correspond-
ing desired trajectories qd(t), 4d(t), d(t) with a sampling internal To (i.e., qd(t) = qd(kTo),

4d() = 4d(kT), and MO(t) = 4d(kT) for all t E [kTO, (k + 1)TO)). For brevity, b(ld(t)) is
denoted by Dd and h(d(t), d(t)) by hd • If the robot system (1) is controlled by the input
torque computed by (29)-(32), we obtain

(t) = -ks(t) - kD-lbd s(t) + n(t) (33)
I1s(QII +

where the disturbance vector, n(t) E R ' , is given by

n(t) = n(qd, 4d,4d, q, l)

= bD(t) [(t) - K,,(t) - Kpe(t) - ks(t)] + [qd(t) - 4d(t)] + D- 1 . - h] (34)

and bD(t) is defined as
6D(t) = D 1 D - I. (35)

We can rewrite (33) as
= k~~t -k 0  s(t) - kD(t) . s(t)

((t) = -k0s(t)- k,, + k b°IIs(t)I + A + n(t). (36)

7



Define the constants N and Al as such

N = max{lln(qdq, , z,w)Jj; [z(t)T ,w(t)T] T E S(,'Y;Xd(t))) (37)

M = max{]16D(qd, z)I1;z(t) E S(,7;qd(t))}. (38)$,z

In what follows, we prove the stability of the system using the controller given by (29)-
(32).

Theorem 1 : For a robotic system (1) using controller given by (29)- (32), if at the
initial time t = t. for any -y > 0,

IIS(to)l < y , jjX(to) - Xd(to)Il < .

and the gain k, is bounded by

N (1+ (k.-p).(A+-) (39)
'Y M

for the given K.,, Kp, k, and for a small positive p, then the system tracking error satisfies

IIs(t)ll < , x(t) E S(-y; Xd(t)) (40)

for all t > t'.
Proof : We consider V(t) = s(t)rs(t) as a Lyapunov function and differentiate it with

respect to t,
dV = s(t) T.(t) = {s(t)T n(t) - kss(t)+

dt 11S(t)II + A

+ {-ko S(t)T 3D(t). s(t) - ks(t)Ts(t)}. (41)
IIs(t)ll + A

Using the matrix inequality [7],

XT Ay < lzxli IlYll - IIAll (42)

we obtain

dV < I.s(t)v{Iln(t)I; - k o I1s(t) 1 + is(t)il2{k . 11SO (t)ll _k ,. (43)
<IIs(t)Illntl k l~~I + A hls(t)hl + A k} (3dt - 11(I 1S 1

If we assume that z(t) 0 S(7Y; Xd(t)) for some t = t2, there exists t1 E [t,, t2 ) such
that s(t) E S(-) for all t E [tot 1) and Ils(ti)ll = -y, since IIX(to) - Xd(to)Il < c Y and the
motion trajectory is continuous. Then z(ti) E S(VY; Xd(tl)) is satisfied (from Lemma 2), and
Iln(ti)ll < N and ll6D(tl)ll < M are satisfied from the definitions of (37) and (38). Hence,
we can rewrite (43) as

d < lls(t)ll{N - k. IIs(t) I + Ils(t)112{ko M k5} (44)
dt -s(t)ll + A Is(t)ll + A

8



at t = t1. If the gain k. satisfies the condition (39), then

(t) < -p. s(t)T S(t) (45)

at t = ti, which contradicts the assumption that x(t) S(f-;xd(t)). This completes the
proof of Theorem 1.

If we use a small sampling time To and have a relatively accurate model, then the
maximum values of N and M can be small. In this case, the lower bound of ko can be
made to be small and the upper bound of ko can be made to be large enough to ensure the
existence of the gain ko. Since the role of feedforward component r71 1 (t) is compensation
for the dynamics and nonlinear coupling torques between the joints, we may take a large
sampling time To for the discrete terms Dd and hd to reduce the computation. Of course, the
sampling time should not be too large. With increase of the sampling time, the magnitude
of modeling errors, IIn(t)J and 115D(t)JJ may become large, and thus the required bounds of
the gain k. become severe and the trajectory error is increased. This will be discussed in
detail in Section 4.

Using the smaller y, s(t) remains closer to the surface s(t) = 0 and the trajectory error
becomes smaller. In this case, the lower bound of the gain ko is not necessarily increased
since the constant N of (37) is decreased. If we take the smaller A in the control algorithm
(32), then both the lower and upper bounds of the gain ko are decreased. However, it is
difficult to expect that the control changes smoothly.

In order to achieve a smooth change of control output, we may consider the interpolation
of the discrete terms Dd and Ad in (30) and (31). Since these terms are functions of the
desired trajectories and can be computed in off-line, the interpolation of these terms can be
achieved by various simple methods.

Substituting the continuous feedback terms q(t) and 4(t) to the sampled nominal tra-
jectory qd(t) and 4d(t), we may get the continuous control input in a combined form as
follows

r(t) = D(q(t)) . u(t) + h(q(t), 4(t)) (46)

• . s(t) (7
u(t) = qd(t) - K.6(t) - Kpe(t) - ks(t) - kO s(t) (47)

Then, we can prove the boundedness of the tracking errors of the system (1) by the controller
(46) and (47) in the same manner as in Theorem 1.

If the model is relatively accurate and the sampling time of discrete components (T3) is
small, it is not so severe to assume that M < 1. In this case, we can obtain the following
Corollary which gives another condition for ko.

Corollary 1 : Consider the robot system (1) using the controller given by (29)-(32). If
M < 1 and at the initial time t = to, IIs(to)I < -f and !IX(to) - Xd(to)I < E --t for any -y > 0
is satisfied at the initial time to, and if the gain ko is bounded by

N.(I I)
M < ko (48)

1-M

9



for given K,, 1fp and positive k,, then the system tracking error satisfies

I1s(t)JI _< -y, (t) E S(67; Xd(t)) (49)

for all t > to.
Proof : We consider V(t) = s(t)Ts(t) as a Lyapunov function and differentiate it with

respect to t,

dV < IIs(011{Ilni(t)-I - k. IIs(t)0I [1 - ID(t)tI]} - ks(t)T s(t). (50)
dt - 'ls(t)I + 'A

If we assume that Ils(t)I _< y for all to < t < ti, and IIs(ti)I = -y for some t1, then it yields

dV < 1s(t)11S- kf IIs(t) [ - lM]) _ks(t) T s(t) (51)dt - IIs(t) + a

at t = t1.Hence, if the gain ko satisfies the condition (48),
dV
d- < -k~s(t) T s(t) (52)

at t = t, which completes the proof of Corollary 1.
The Corollary 1 also gives some insight of the role of the term, -ks(t), in the feedback

component. Combining Theorem 1 and Corollary 1, the sufficient condition for the stabil-
ity of the system with controller (29)-(32) is that ko satisfies the lower and upper bound
conditions given by (39), or ko satisfies the lower bound condition given by (48) if M < 1.

If we eliminate the norm of s(t) in u,(t), we can compute u,,(t) independently for each
joint and the more efficient computation is possible. Thus, instead of using the feedback
control (32), we propose to use the feedback component as follows,

uo(t) = -Kk(t) - Kpe(t) - ks(t) - ko(t) (53)

where s,(t) (4
a(t) = [a,... a,., *,"T , u,(t) - I,(t) (54)

When the gain matrices K, and Kp are diagonal, we can rewrite (53) as

u',(t) = -kv. ,(t) - k,.ei,(t) - k,s,(t) - k0oa(t). (55)

Using the controller given by (29)-(31), and (53) for the robot system (1), the differential
tracking error

i(t) = -ks(t) - koa(t) - ko - 6D(t)a(t) + n(t). (56)

where the disturbance vector n(t) is given by (34), and its i-th element is denoted by ni(t).
The (i,j)-th element of 6D(t) is denoted by 6Di,(i) and the constants No, and AfM, are
defined as follows

N. = max{" lni(4d, 4d, qd, z, w)1; [Z(t)T ,W(t)T]T E Z(E-; Xd(t))} (57)
t,z,w ,

10



MI¢ = max{" Z I6D#,(qd, z)1; z(t) E Z(Ey: qd (t))} (5S)
t,z

where the neighborhood set Z(p; v) is defined below, for any scalar p and vector v E Rn

Z(p; v) = {w E R'; 11w - vji. _< p) (59)

where 1"1 is the infinity norm of vector which is the maximum of the absolute values of
its elements.

Now we study stability of the system using the controller (29)-(31) and (53).
Theorem 2 : Consider the system (1) with controller given by (29)-(31) and (53). If.

for any -- > 0, fs(to)l, :5 -y and x(to) E Z(EY; Xd(t)) at the initial time t, and the gain k,
satisfies

IV"". (1 + < ko < (.p (A+(60)
-y Mo

for the given If,, Ip, k, and for an arbitrary small positive number p, then the system
tracking error

I1s(t)JI <5 -, x(t) E Z(16-1; X (t)) (61)

for all t > to.
Proof : Consider V(t) = s(t)Ts(t) as a Lyapunov function and differentiate it with

respect to t,
dV t
"V (t) = s(t) Ts(t) = {s(t) T n(t) - kos(t) T o(t)} + {-kos(t)T6bD(t)O(t) - ks(t)Ts(t)}. (62)

Equation (62) can be rewritten as

dV (t) s(t)n(t) - k. - k , s(t)bD (t) -(t) k _ si(t) 2  (63).0 si(t) I+A , Isi(t) I+A S

which is bounded by

dV I s,(t) 12--i(t) _s{ .. I (t)I I n,,(t) 1) -k. E ,t Ti
dt~~ i ISi(t) I+A1

+fko I s,(t) 1 6D i(t) II si(t) I _ k, I s,(t) 121
7 I si(t) I + A

< Is(t)JIf{(1 1 n,(t) I) - IIs(t)II A
SlIs(t)1- + A

+ IIS(t)l2{ko E l bDi(t) 1] k} (64)IIs(t)Ikl +/ -A ,.(4

If we assume that IIs(t)IK > -1 is true for some t = t 2 , there exists ti E [t0 , t 2) such that
IIs(t)Ij _< -f for all t E [t,ti) and [Is(tj)k,,= -y and -L-t(t) > 0. Lemma 2 implies that

11



x(t1 ) E Z(E-Y;xd(tl)) and thus IIn(ti)I :5 No, and 116D(ti)JI M, are satisfied from the
definition of N,, and M1. In this case, we can rewrite (64) as

dV ______0 M--- (t) < 11s(t0JJ.oN. - k. I +s1t)]tl11 MJkissttIY{l - I + jjs(t)jj {k° - k,} (63)
- -(01- iIs(t)Iko + A

at t = ti. Hence, when the gain ko satisfies the condition(60), we have

dV (t P1(1'0(66)dV

at t = t1, and this completes the proof of Theorem 2.
If we assume A in the feedback component (55) as to be zero, then it takes the form of the

sliding mode controller. The role of A is to change the discrete function to the continuous
function.

By substituting the sampled nominal trajectory qd(t) and qd(t) by the feedback measure-
ment q(t) and 4(t) respectively, we obtain the continuous control input in a combined form
as follows

7(t) = D(q(t)) . u(t) + h(q(t), 4(t)) (67)

u(t) = qd(t) - K.6(t) - Kpe(t) - k.s(t) - k~o(t). (68)

We may also easily prove the boundedness of the tracking errors of the system (1) by using
the above controller in similar way to that used in Theorem 2.

Provided that A, < 1 is satisfied, the following Corollary gives a different bound of the
gain k0 from the bound in Theorem 2.

Corollary 2 : Consider the system(l) with the controller given by (29)-(31) and (53).
If, for any - > 0, IIs(to)Ilko _< -y and x(t0 ) E Z(-Y; xd(to)) at the initial time to, and the gain
k,, satisfies the following condition for the given K., Kp, and positive k,

N,. -(1 + A) < ko. (69)
1 -M

then the system tracking error is bounded by y,

IIs(t)II. _5 -, x(t) E Z VY; Xd(t)) (70)

for all t > t(.
Proof : Consider V(t) = ls(t)rs(t) as a Lyapunov function and differentiate it with

respect to t,
dV( si(t) ni(t) k. s,(t) 2

dt i t)I+

I{kZ si s(t) Si j ID 1 (t) I si (t) - k.s(t )T S(t)}j , Isi(t) I +A

12



1s(t)Joo(JI ni(t) 1) -ko.Is(t)IO + [1 _ , D,,(t) H] k, s(t) T s(t). (71)- , IWstlOo + A , j

Provided that IIs(t)K :5 -y for all t E [totl) and Ils(t,)lloo = "y for any time ti, then,

dV ____-V-(t) < IIs(t)ll{N - ko 1s(t)loo [1 - Mo]} - ks(t)Ts(t) (72)
- IIS(t)lI + )

at t = ti. Consider the condition (69),

dV 
()StT-(t) < -k,strs) (73)

at t = ti. This completes the proof of Corollary 2.
For the digital implementation of the proposed algorithm, the controller may take the

multiple-rate structure, where the sampling time T,, of the feedback component is much
smaller than the sampling interval To of the feedforward component. The feedback compo-
nent u,(t) of (32) and (53) is simple in structure and less computational time is needed. If we
consider the gain matrices K,, and 14p to be diagonal, we may compute u,(t) for each joint
independently. When bd is computed in off-line, the number of multiplication and addition
required to compute r(t) is shown in the Table I. The values in the parentheses correspond
to the case n = 6, and the integral term in the sliding vector is computed, as an example,
in the following way.

int(k) = int(k - 1) + kpe(k) (74)

s(k) = i(k) + K,,e(k) + int(k), (75)

where s(k) is the value of the sliding vector at the k-th sampling time (t = kT ), and
int(O) = 0 and/f'p = T. Kp.

The computation of the robot model is 132n multiplications and 111n - 4 additions where
n is the number of the degree-of-freedom of the manipulator, when the Recursive Newton-
Euler algorithm is used. In case n = 6, the number of required multiplications is 792 and
additions is 662. Thus the feedback component is of higher frequency up to 40-times than
the feedforward component.

Table I The Computational Cost Summary of Feedback Control Compnent Using the
Proposed Algorithms (The Numbers within Blankets are for the Case n-6)

Feedback Controls The Number of Muliplication The Number of Aditon Square Root
(Division) (Subtraebon)

Theorem1 2n. (18) 2n.5(17) 1

Theorem 2 n+6(12) n .6(12) 0
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4 Simulation Results

The purpose of the simulation is to show the robust property of the proposed algorithms.
The simulation result is compared with that using the computed torque algorithm. A three
degree-of-freedom manipulator is used as a case study shown in Figure 1.

Q1 2m, q2'I - 3 lm

Top View Side View

Figure 1 A Three Degree-of-Freedom Manipulator

The parameters are D = 0.0213kg.m, M1 = M2 = 0.782kg, and 11 = 12 = 0.23n. To
examine the robustness to modeling uncertainties, the modeling errors of each parameter,
i.e., mass, length of link and moment inertia, are considered to be 1%. In simulation, the
payload of 0 kg., 0.3 kg., or 0.5 kg. were carried by the manipulator. The execution time
was 2 seconds and the desired trajectory was

(qfinal - qinit) * t (qfnin - qinit) sin(rt)qd(t) = qini +-2"
2 2

where the initial position qi,,it = [0.4, -0.1, 0 .21T (rad.), and the final position qfinal=

[-0.1, 0.3, 0 .65 ]T (rad.).
In the simulation, the sampling time T, of the feedback component (32) and (53) were

selected to be 1 ms. The sampling time To of the feedforward component (30) can be selected
to be much larger than T, due to the rationale mentioned previously. Two values of TO, 10
ms and 50 ms, is used in simulation, assuming that the time required for the computation of
the model (28), T,, is 10 ms. The block diagram of the CTM and the proposed algorithms
are shown in Figure 2 and Figure 3.

14



E ................. ....Robot

• .o~q)% +(q.I

qd((t) q. P

q d (t)

q d (t) 
-

T, Tr

Figure 2 Block Diagram of the Computed Torque Method
(Kg =0 , K -1 L00 1. T, he Tms)

zefir Io Robo --

Tp.

Figure BokaramofmePrpoe Contrl A lgrtm

20. I, K, = 100.1, I, = 100, ko = 10, y' = 0.1 in the feedback components (32) and (53)
of" the proposed method. The simulation results of the CTM algorithm and the proposed

algorithms are shown in Figure 4, Figure 5, and Figure 6.
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F I

a 1 - w. - - - -

/ 
/

a A A Ii 1 A4 a Tim(Sm.)

T-i

a -i a T-A(S.

Figure 4 Simulation Results of CTM Algorithm
(A :0 kg Load, B :0.3 kg Load, C 0.5 kg Load)
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\7

/).-I (a) Jointl

(b) Joint 2

'4 -- --- - -(c) Joint 3

Figure 5 Simulation Results of Theorem 1
(A: Load = 0 kg and To = 10i,
B :Load = 0.3 kg and To = 107n.9,
C :Load = 0.5 kg and To = 5Oms)
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- ~ . I -(a) Joint 1

(b) Joint 2

a~~~~ -, (See.) -- - -

/ - (c) Joint 3

I Is *A is 2 a Tim (SOL)

Figure 6 Simulation Results of Theorem 2
(A Load = 0 kg and To0 = 10mi,
B Load = 0.3 kg and To, = l1ins,
C Load = 0.5 kg and Tg = 50ms)



For comparison, the maximum absolute values, and the root-mean-square values of the
errors and torques are summarized in Table II.

Table II Simulation Results of the Proposed Algorithms

a gnthm CTM Theorem 1 Theorem 2

L T .10ms [ T=50ms To 10ms Tp .50ms

e M  0.4400 0.0027 0.0028 0.0027 0.0028

0 Kg eOr.s 0.2747 0.0009 0.0009 0.0009 0.0009

fM 3.2167 3.2167 3.2167 3.2166 3.2166

ftms 2.0162 2.0183 2.0183 2.0183 2.0183

am  8.9651 0.0683 0.0683 0.0661 0.0660

0.3 kg ams 4.4950 0.0167 0.0167 0.0158 0.0158

I M 3.9068 3.9018 3.9025 3.9019 3.9026

rms 2.5523 2.5244 2.5214 2.5213 2.5214

m 17.564 0.1416 0.1416 0.1355 0.1355

0.5 kg erms  8.6669 0.0343 0.0343 0.0317 0.0317

f 4.3339 4.4052 4.4048 4.4153 4.4148

rms 2.9106 2.8600 2.8600 2.8600 2.8600

e m  : The Sum of The Maximum Absolute Values of The Three Joint Angle Errors (Degree)
*m=s: The Sum of The Root-Mean Square Values of The Three Joint Angle Erroers (Degree)
t m The Sum of The Maximum Absolute Values of The Three Joint Torques (N-m)
trn :The Sum of The Root-Mean Square Values of The Three Joint Torques (N-m)
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When the payload is 0 kg and To = 50 ms, the sum of the root-mean-square values of
three joint errors is 0.2747 (degree) using the CTM algorithm, while it is 0.0009 (degree)
using the proposed algorithm. Both proposed two algorithms presented better performances
than the CTM algorithm in the sense of the tracking errors. As the payload increases, the
root-mean-square error is rapidly increased from 0.2747 (degree) to 4.4950 (degree) using the
CTM algorithm, while using the proposed algorithms the resultant error maintains nearly
unchanged. Especially, note that using the proposed algorithm the tracking error is not
increased so much as the increase of the payload error, for the case To = 50 ms.

The simulation results have shown that by the proposed algorithms the input torque
changed smoothly, which is desirable in the implementation. When the payload is 0.5 kg
and To = 50 ms, the sum of the root-mean-square values of the three joint torques is 4.334
(N. m) using the CTM algorithm, while it is 4.410 (N • m) using the proposed algorithm.
To compensate for the disturbance of the payload error, a slightly large input torque is
necessary. For the proposed algorithms, the input torques with TO = 50 ms are slightly
larger than that in the case T = 10 ms.

From the simulations, we have found that the proposed algorithm provides an excellent
robust performance to the disturbance of the modeling error.
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5 Conclusions

In this report, a composite control algorithm for the control of robot manipulators is pro-
posed. The discrete component is a nominal torque for the feedforward compensation for
the nonlinear coupling torques between the links.

The feedback component uses the sliding mode control of the Variable Structure System
which presents a stable performance. The proposed algorithm does not impose an additional
computation on the real-time implementation, since the computation of model is necessary
only for the feedforward component which can be computed off-line. In the digital implemen-
tation, the controller takes the form of the multiple-rate structure. The feedback controller
does not need much computational time and allows the short sampling time, and thus a
fast motion of a multi-degree freedom robot manipulator can be executed by using a simple
computer, or even a single board computer with an 8-bit CPU. Moreover, the time delay of
the measurement can be negligible, since the measurement is utilized only in the feedback
component.

The simulation results have shown the efficiency of the proposed algorithms for the tra-
jectory tracking and the robust property to the modeling inaccuracy and unknown payloads.
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